Article ID Journal Published Year Pages File Type
4713019 Journal of Volcanology and Geothermal Research 2010 18 Pages PDF
Abstract

Maps of areas potentially affected by block-and-ash flows and associated ash clouds are here presented for the Volcán de Colima. TITAN2D 2.0.1 code has been used to simulate block-and-ash flows using as an input volume that of the actual summit dome (assessed at 2 × 106 m3), while the Energy Cone model has been used to delimit the possible inundated area from associated ash clouds. Both Merapi- and Soufriere-type block-and-ash flows were generated using different basal friction angles and maintaining fixed the volume and the internal friction angle. The setting of the input parameters takes into account some flow characteristics, such as the stepwise aggradation of different pulses that piled up to form the total thickness of the block-and-ash flow deposits. The outputs of the computational routines are reported as two maps describing the total thickness of the final deposits. They predict that thick deposits will engulf the ravines descending from the main cone to the west, south and southeast, with expected maximum runouts between 4.5 and 7 km. The associated ash clouds have slightly longer runouts, and the model predicts they will inundate some higher grounds that are not affected by the concentrate underflows. The presented maps represent useful tools for managing the current block-and-ash flow hazard at Volcán de Colima.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , , , ,