Article ID Journal Published Year Pages File Type
4713328 Journal of Volcanology and Geothermal Research 2009 17 Pages PDF
Abstract
We analyze earthquakes occurring in and around the Rotorua and Kawerau geothermal systems, Taupo Volcanic Zone, New Zealand. The two data sets contain 504 and 1875 shallow (≤ 20 km deep) earthquakes, respectively, and span the 21 year period between 1984 and 2004. The arrival time data for these earthquakes are first used to calculate 1-D P- and S-wave seismic velocity models and accompanying station correction terms for both areas. In order to address the non-uniqueness of the joint hypocenter-velocity model estimation problem, we analyze suites of 1000 velocity models computed from random initial models. The final velocity models are well constrained, particularly at depths between 4 and 15 km, and consistent with the results obtained in previous seismic refraction studies of the central Taupo Volcanic Zone. Using a combination of cross-correlation-derived and catalog-based arrival times, we relocate subsets of the Rotorua and Kawerau data sets. In Rotorua, the relocated earthquakes cluster near the geothermally active parts of Rotorua City and beneath the Mount Ngongotaha rhyolite dome. Earthquake clusters and alignments reveal seismogenic structures in the mid-crust whose positions and geometries are consistent with previously published fault mechanisms and known near-surface faults. In Kawerau, the earthquakes within the geothermal field align along northeast-trending lineations, consistent with the predominant alignment of surface-mapped faults in the area.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , ,