Article ID Journal Published Year Pages File Type
4714631 Journal of Volcanology and Geothermal Research 2008 8 Pages PDF
Abstract
Satellite remote sensing represents a mature technology for long-term monitoring of volcanic activity at Mount Erebus, either independently or as a complement to field instrumentation. Observations made on 4290 discrete occasions over a six year period by NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) indicate that the radiant flux from the volcano's summit crater (and by inference, the lava lake contained therein), while variable on the time scale of days to weeks, has varied little on an inter-annual basis over this period. The average radiant flux from the lake during this time was 15 MW, with a maximum flux of 100 MW. Such heat flux time-series have been shown to act as a reliable proxy for general levels of activity at erupting volcanoes around the world, particularly when these time-series are of a long duration. The apparent stability of Erebus' power output is in marked contrast to fluxes observed at three other terrestrial volcanoes, Erta 'Ale (Ethiopia), Nyiragongo (Democratic Republic of Congo) and Ambrym (Vanuatu), which, while also hosting active lava lakes, all exhibit much greater variability in radiant flux over the same period of time. The results presented in this paper are confluent with those obtained from geochemical considerations of the Erebus' degassing regime, and confirm that remarkably stable open-system volcanism appears to be characteristic of this long-active volcano.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, ,