Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4714762 | Journal of Volcanology and Geothermal Research | 2008 | 8 Pages |
Abstract
Gas-fluidisation is commonly invoked as an important process during the formation of vent-fill deposits in diverging kimberlite pipes. In this study, we performed a series of laboratory experiments to determine the gas-fluidisation behaviour of particles in both confined straight-sided and tapered containers, as an analogue to volcaniclastic materials infilling a kimberlite pipe, in the presence of a gas flow. We investigated the effects of taper angle, bed height and gas flow rate on fluidisation behaviour, focusing on medium-coarse grained particles (106-212 μm). We show that beds in straight-sided containers become homogeneously fluidised, whereas beds in tapered containers become heterogeneous, with fluidisation limited to a central roughly hyperboloid-shaped region. Either side of the well-mixed fluidised core, marginal wedge-shaped regions remain unfluidised, and the width of unfluidised regions decreases with increasing gas flux. The unfluidised wedges are internally laminated and slip downwards when a critical proportion of the bed is fluidised (â¼Â 90%). This generates a “conveyor-belt”-type mechanism of particle transport. These experimental observations demonstrate how fluctuations in gas velocity can produce steep internal boundaries between laminated and well-mixed regions. The observations also show how marginal inward dipping layered sequences could slip into deep parts of kimberlite pipes. Our results provide a framework for interpreting the volcaniclastic lithofacies of kimberlite pipes.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geochemistry and Petrology
Authors
Thomas M. Gernon, Mark A. Gilbertson, R. Stephen J. Sparks, Matthew Field,