Article ID Journal Published Year Pages File Type
4715225 Journal of Volcanology and Geothermal Research 2009 8 Pages PDF
Abstract

Long-term changes have occurred in the chemistry, isotopic ratios, and emission rates of gas at Mount Baker volcano following a major thermal perturbation in 1975. In mid-1975 a large pulse in sulfur and carbon dioxide output was observed both in emission rates and in fumarole samples. Emission rates of CO2 and H2S were ∼ 950 and 112 t/d, respectively, in 1975; these decreased to ∼ 150 and < 1 t/d by 2007. During the peak of the activity the C/S ratio was the lowest ever observed in the Cascade Range and similar to magmatic signatures observed at other basaltic–andesite volcanoes worldwide. Increases in the C/S ratio and decreases in the CO2/CH4 ratio since 1975 suggest a long steady trend back toward a more hydrothermal gas signature. The helium isotope ratio is very high (> 7 Rc/RA), but has declined slightly since the mid-1970s, and δ13C–CO2 has decreased by ≥ 1‰ over time. Both trends are expected from a gradually crystallizing magma. While other scenarios are investigated, we conclude that magma intruded the mid- to shallow-crust beneath Mount Baker during the thermal awakening of 1975. Since that time, evidence for fresh magma has waned, but the continued emission of CO2 and the presence of a long-term hydrothermal system leads us to suspect some continuing connection between the surface and deep convecting magma.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , , ,