Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4716987 | Lithos | 2010 | 15 Pages |
The Qinling–Dabie–Sulu orogen marks the junction between the North and South China Blocks. However, the exact timing of the final coalescence of the North and South China Blocks in the Qinling orogen is poorly constrained. This paper presents new SHRIMP zircon U–Pb chronology, major and trace elements, and Sr–Nd–Hf isotope data for five early Mesozoic granitic plutons across the Qinling orogen. SHRIMP zircon U–Pb dating shows that four plutons were emplaced in the Carnian (227–218 Ma) of Late Triassic with a southward-younging trend and one pluton was emplaced in the Norian (∼ 211 Ma) of Late Triassic. The Carnian plutons consist of high-K calc-alkaline granitoids (quartz monzodiorite, quartz monzonite, granodiorite and monzogranite) and calc-alkaline diorite. These rocks are mainly metaluminous and are characterized by high Sr and low Y and Yb contents, with high Sr/Y and La/Yb ratios, and by high Mg#, higher than pure crustal melts. The Norian pluton is composed of high-K calc-alkaline two-mica granites, which are peraluminous. These granites have low Sr and high Y and Yb contents and show similar Mg# to pure crustal melts. Detailed elemental and isotopic data suggest that the Carnian plutons were emplaced in a continental arc setting coupled with the northward subduction of the Paleo-Tethyan oceanic crust. Partial melting of subducted sediments triggered by dehydration of the underlying igneous oceanic crust, with subsequent melts interacting with the overlying mantle wedge, formed the high-K calc-alkaline granitic magmas. Partial melting of the hybridized peridotitic mantle wedge induced by slab melts generated the calc-alkaline dioritic magma. The Norian pluton was emplaced during continental collision between the South Qinling terrane and South China Block, which marks the final integration of the North and South China Blocks. Partial melting of subducted sediments at a shallow depth (< 30 km) in the collision (overthrust) zone could account for the origin of the Norian peraluminous granites. Our new data suggest that the final coalescence of the North and South China Blocks in the Qinling orogen is not synchronous with that in the Dabie–Sulu orogen, and thus, the Paleo-Tethyan oceanic basin between the North and South China Blocks most likely occurred as a ‘scissors-like’ shape, with closure in the Anisian (∼ 240 Ma) of Middle Triassic in the eastern part (Dabie–Sulu) and in the Norian (∼ 211 Ma) of Late Triassic in the western part (Qinling).