Article ID Journal Published Year Pages File Type
4717457 Lithos 2008 24 Pages PDF
Abstract

In this paper we show that thermodynamic forward modelling, using Gibbs energy minimisation with consideration of element fractionation into refractory phases and/or liberated fluids, is able to extract information about the complex physical and chemical evolution of a deeply subducted rock volume. By comparing complex compositional growth zonations in garnets from high-and ultra-high pressure samples with those derived from thermodynamic forward modelling, we yield an insight into the effects of element fractionation on composition and modes of the co-genetic metamorphic phase assemblage. Our results demonstrate that fractionation effects cause discontinuous growth and re-crystallisation of metamorphic minerals in high pressure rocks. Reduced or hindered mineral growth at UHP conditions can control the inclusion and preservation of minerals indicative for UHP metamorphism, such as coesite, thus masking peak pressure conditions reached in subducted rocks.Further, our results demonstrate that fractional garnet crystallisation leads to strong compositional gradients and step-like zonation patterns in garnet, a feature often observed in high-and ultra-high pressure rocks. Thermodynamic forward modelling allows the interpretation of commonly observed garnet growth zonation patterns in terms of garnet forming reactions and the relative timing of garnet growth with respect to the rock's pressure–temperature path. Such a correlation is essential for the determination of tectonic and metamorphic rates in subduction zones as well as for the understanding of trace element signatures in subduction related rocks. It therefore should be commonplace in the investigation of metamorphic processes in subduction zones.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , ,