Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4717811 | Lithos | 2007 | 20 Pages |
Abstract
Anhydrous spinel lherzolite and harzburgite xenoliths from Tres Lagos, situated inboard of the Volcanic Arc Gap (VAG) in southernmost Patagonia, are samples of a depleted lithospheric mantle and can be divided into two major groups: metasomatized and non-metasomatized. Metasomatized samples, which are the minority, are partly mylonitized and their metasomatism is related to this tectonic process. A group of non-metasomatized samples have enriched whole rock LREE-abundances that are not consistent with the depleted LREE-abundances in their clinopyroxenes. Intergranular host basalt infiltration could be responsible for the whole rock LREE enrichments. Their Sr- and Nd-isotopic ratios have also been affected by host basalt infiltration, whereas their high Sr-isotopic ratios point to subsequent contamination by ground-water and/or Ca-rich surface solutions. Similar contamination is thought to cause the decoupling of Sr- and Nd-isotopes (high Sr- and Nd-isotopic ratios) observed in the non-metasomatized samples with depleted whole rock LREE. A two-stage partial melting process could be responsible for the origin of the Tres Lagos xenoliths. Model calculations have shown that in the first stage, 2% of batch melting took place in the garnet peridotite field and subsequently the residue experienced 2-8% batch melting in the spinel peridotite field. The Tres Lagos peridotites have not been affected by subduction-related metasomatic processes and they could represent an old lithospheric mantle.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geochemistry and Petrology
Authors
Th. Ntaflos, E.A. Bjerg, C.H. Labudia, G. Kurat,