Article ID Journal Published Year Pages File Type
4717913 Lithos 2006 12 Pages PDF
Abstract

The origin of A-type granites and rhyolites are ultimately relatable to mantle-derived melts and fluids in a zone undergoing extension. The basaltic magmas are accompanied by an alkaline fluid phase, dominantly H2O + CO2, which will induce alkali metasomatism of the granulitic crust above. The distinctive mineralogy and geochemistry are thus a direct result of the tectonic environment of formation. Metaluminous and peralkaline granites are magmatic compositions that typically contain evidence of crust and mantle in their genetic baggage, but peraluminous A-type granites may well be caused by efficient loss of alkalis during epizonal degassing. A-type granites and rhyolites are members of a vast family of rift-related magmas that include those of syenitic, nepheline syenitic and carbonatitic character. The fluid phase at work is alkaline. It can carry a host of trace elements in solution, in particular the high-field-strength elements and the rare earths. It can fenitize and fertilize a refractory lower crust, and prepare the precursor for near-complete melting. Some examples of A-type granitic magma do arise by efficient fractional crystallization of a mantle-derived basaltic magma, with or without accompanying assimilation, but many arise by partial or complete melting of an alkali-metasomatized crust.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
,