Article ID Journal Published Year Pages File Type
4720997 Physics and Chemistry of the Earth, Parts A/B/C 2013 10 Pages PDF
Abstract

•We developed water resources models for three East African towns.•Models investigated climate, infrastructure and demographic scenarios.•All three towns are limited by infrastructure more than water availability.•Hydroclimatic monitoring is recommended for integrating climate change in utility planning.

Urban areas in the Lake Victoria (LV) region are experiencing the highest growth rates in Africa. As efforts to meet increasing demand accelerate, integrated water resources management (IWRM) tools provide opportunities for utilities and other stakeholders to develop a planning framework comprehensive enough to include short term (e.g. landuse change), as well as longer term (e.g. climate change) scenarios. This paper presents IWRM models built using the Water Evaluation And Planning (WEAP) decision support system, for three towns in the LV region – Bukoba (Tanzania), Masaka (Uganda), and Kisii (Kenya). Each model was calibrated under current system performance based on site visits, utility reporting and interviews. Projected water supply, demand, revenues and costs were then evaluated against a combination of climate, demographic and infrastructure scenarios up to 2050. Our results show that water supply in all three towns is currently infrastructure limited; achieving existing design capacity could meet most projected demand until 2020s in Masaka beyond which new supply and conservation strategies would be needed. In Bukoba, reducing leakages would provide little performance improvement in the short-term, but doubling capacity would meet all demands until 2050. In Kisii, major infrastructure investment is urgently needed. In Masaka, streamflow simulations show that wetland sources could satisfy all demand until 2050, but at the cost of almost no water downstream of the intake. These models demonstrate the value of IWRM tools for developing water management plans that integrate hydroclimatology-driven supply to demand projections on a single platform.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , , ,