Article ID Journal Published Year Pages File Type
4725382 Quaternary Geochronology 2007 8 Pages PDF
Abstract

Post-depositional mixing or exhumation is common in surficial sediments, yet may be unobservable from field evidence. However, any disturbance may have significant consquences in terms of establishing a reliable luminescence age determination. Optically stimulated luminescence (OSL) measurements, particularly measurements at the single grain level, can be used to gain an insight into both contemporary and past post-depositional processes.This paper examines sites from Texas and Florida (USA) with independent chronological control to demonstrate the potential effects of varying degrees of bioturbation on OSL. Results show that contemporary soil forming processes clearly impact on the palaeodose (De) replicate distributions which are measured in order to derive an OSL age. Significant levels of scatter and apparently zero dose grains are observed in the upper-most sediments; declining with depth from the surface. De replicates from undisturbed and fully bleached sediments are unskewed, show low overdispersion (OD) and comparable single grain and single aliquot OSL ages. Bioturbated sediments, however, may show highly skewed multi-model De distributions with higher OD values, zero dose grains at depth, and significant diffences between single grain and single aliquot results. True burial ages may be derived from minimally bioturbated sediments through the application of statistical analysis such as finite mixture modelling to isolate De components. However, for significantly bioturbated sediments, the latter approach, even at the single grain level, produces inaccurate ages. In such cases we argue that additional evidence (both dating and contexual) may be required to identify with confidence the burial De population.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , , , ,