Article ID Journal Published Year Pages File Type
4726147 Earth-Science Reviews 2010 11 Pages PDF
Abstract

The Caribbean oceanic plateau formed in the Pacific realm when it erupted onto the Farallon plate from the Galapagos hotspot at ∼ 90 Ma. The plateau was subsequently transported to the northeast and collided with the Great Arc of the Caribbean thus initiating subduction polarity reversal and the consequent tectonic emplacement of the Caribbean plate between the North and South American continents. The plateau represents a large outpouring of mafic volcanism, which has been interpreted as having formed by melting of a hot mantle plume. Conversely, some have suggested that a slab window could be involved in forming the plateau. However, the source regions of oceanic plateaus are distinct from N-MORB (the likely source composition for slab window mafic rocks). Furthermore, melt modelling using primitive (high MgO) Caribbean oceanic plateau lavas from Curaçao, shows that the primary magmas of the plateau contained ∼ 20 wt.% MgO and were derived from 30 to 32% partial melting of a fertile peridotite source region which had a potential temperature (Tp) of 1564–1614 °C. Thus, the Caribbean oceanic plateau lavas are derived from decompression melting of a hot upwelling mantle plume with excess heat relative to ambient upper mantle. Extensional decompression partial melting of sub-slab asthenosphere in a slab window with an ambient mantle Tp cannot produce enough melt to form a plateau. The formation of the Caribbean oceanic plateau by melting of ambient upper mantle in a slab window setting, is therefore, highly improbable.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, ,