Article ID Journal Published Year Pages File Type
4729813 Journal of African Earth Sciences 2007 7 Pages PDF
Abstract

Variations in enrichment of mineral deposits in continental crust over time may be one way to test for secular changes in crustal genesis. We present spatial and chemical information about African mineral deposits with which to ‘fingerprint’ the metal endowment of African crust of different age. We then compare three regions of juvenile African crust, all with similar geology, tectonic history, and mineral deposits, but each of a different age. Each region was formed during rapid accretion of similar tectonic units derived from the mantle over ∼500 million years, and is apparently devoid of older recycled continental crust. Together, the three areas span 2500 million years of Earth history, from 0.5 Ga to 3.0 Ga, (e.g. the Zimbabwe Craton (2.5–3.0 Ga), the Birimian Shield (1.8–2.3 Ga), and the Arabian–Nubian Shield (0.5–1.0 Ga)). The three areas have a studied total of 2671 mineral deposits that are divided into six groups according to their geochemical affinities. Using these known deposits, a measure of spatial association (spatial coefficient) is derived. We show that each region has a unique metal endowment and that, per unit area, there is a greater concentration of mineral deposits in the crust of the Archean Zimbabwe Craton relative to the younger crust of the Birimian Shield and in turn the Arabian–Nubian Shield. This study quantitatively corroborates past studies that suggest older crust is more mineral diverse and enriched in mineral deposits than younger crust. Thus, a secular change in mineralization is implicated, and the mantle derived metal endowment of the African crust has undergone major evolutionary changes from Archean to Neoproterozoic time.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, , ,