Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4730775 | Journal of Asian Earth Sciences | 2014 | 21 Pages |
Abstract
The diorite porphyry and plagiogranite porphyry are host porphyries, but the plagiogranite porphyry is a productive porphyry. It caused the porphyry-style Cu mineralization and associated alteration. The alteration assemblages include early potassic and propylitic assemblages. These were overprinted by a chlorite-sericite assemblage, which in turn was overprinted by a late phyllic assemblage. The phyllic alteration is associated with the highest Cu grades. The mineralization is recognized to include three stages, from early to late: stage 1, a potassic alteration associated with a chalcopyrite + pyrite assemblage; stage 2, represented by chlorite-sericite alteration with a chalcopyrite + pyrite assemblage; and stage 3, the main-ore stage that is marked by phyllic alteration with chalcopyrite + pyrite ± molybdenite and producing more than 70% of the total copper production at Yandong. Yandong may represent a common scenario for Paleozoic porphyry Cu systems in the Central Asian Orogenic Belt.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geology
Authors
Ping Shen, Hongdi Pan, Lianhui Dong,