Article ID Journal Published Year Pages File Type
4732042 Journal of Asian Earth Sciences 2009 9 Pages PDF
Abstract

This paper presents a data-driven approach for effective and efficient forecasting of tsunami generated by underwater earthquakes. Based on pre-computed tsunami scenarios as training data sets the Artificial Neural Network (ANN) is used for the construction of data-driven forecasting models. The training data comprised spatial values of maximum tsunami heights and tsunami arrival times (snapshots), computed with process-based TUNAMI-N2-NUS model for the most probable ocean floor rupture scenarios. Validation tests demonstrated that with a given earthquake size and location, the ANN method provides accurate and near instantaneous forecasting of the maximum tsunami heights and arrival times for the entire computational domain.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, , , , , , ,