Article ID Journal Published Year Pages File Type
4733611 Journal of Structural Geology 2010 15 Pages PDF
Abstract

Microstructural study of rocksalt samples from an active salt fountain (Qum Kuh, central Iran) enabled to identify the relative contribution of different deformation mechanisms on extrusive salt flow. The microstructural study combined reflected and transmitted light microscopy of gamma-irradiated thin sections, textural analysis of digitized microstructures and Electron Back Scattered Diffraction (EBSD). Deformation microstructures record the strongly variable deformation conditions of salt flow in the diapiric system from the diapiric stem towards the distal part of the mature viscous fountain. High-stress deformation conditions typical for diapiric stems are recorded in the small subgrains within the porphyroclasts of all documented samples. Recovery and recrystallization due to divergent and decelerating flow associated with differential stress drop in the salt extrusion above the diapiric orifice is reflected by abundant growth band microstructures. This study reveals also evidence for penetration of rainwater into the salt mass and documents the switch from the dominant dislocation creep into dominant solution-precipitation creep from the upper part to the distal part of the fountain. This deformation mechanism switch is provided by influx of meteoric water and grain size decrease likely controlled by subgrain rotation and grain-boundary migration recrystallization.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, , , ,