Article ID Journal Published Year Pages File Type
4735013 Proceedings of the Geologists' Association 2014 17 Pages PDF
Abstract

Deposit modelling based on archived borehole logs supplemented by a small number of dedicated boreholes is used to reconstruct the main boundary surfaces and the thickness of the main sediment units within the succession of Holocene alluvial deposits underlying the floodplain in the Barking Reach of the Lower Thames Valley. The basis of the modelling exercise is discussed and the models are used to assess the significance of floodplain relief in determining patterns of sedimentation. This evidence is combined with the results of biostratigraphical and geochronological investigations to reconstruct the environmental conditions associated with each successive stage of floodplain aggradation. The two main factors affecting the history and spatial pattern of Holocene sedimentation are shown to be the regional behaviour of relative sea level and the pattern of relief on the surface of the sub-alluvial, Late Devensian Shepperton Gravel. As is generally the case in the Lower Thames Valley, three main stratigraphic units are recognised, the Lower Alluvium, a peat bed broadly equivalent to the Tilbury III peat of Devoy (1979) and an Upper Alluvium. There is no evidence to suggest that the floodplain was substantially re-shaped by erosion during the Holocene. Instead, the relief inherited from the Shepperton Gravel surface was gradually buried either by the accumulation of peat or by deposition of fine-grained sediment from suspension in standing or slow-moving water. The palaeoenvironmental record from Barking confirms important details of the Holocene record observed elsewhere in the Lower Thames Valley, including the presence of Taxus in the valley-floor fen carr woodland between about 5000 and 4000 cal BP, and the subsequent growth of Ulmus on the peat surface.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, , , , , ,