Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4736045 | Quaternary Science Reviews | 2009 | 20 Pages |
We present new stratigraphic, sedimentological, and chronological data for a suite of tectonically raised beaches dating to Marine Isotope Stages 5, 4, and 3 along the Estremadura coast of west-central Portugal. The beach deposits are found in association with ancient tidal channels and coastal dunes, pollen bearing mud and peat, and Middle Paleolithic archaeological sites that confirm occupation of the coastal zone by Neanderthal populations. The significance of these deposits is discussed in terms of the archaeological record, the tectonic and geomorphic evolution of the coast, and correlation with reconstructions of global climate and eustatic sea-level change. Direct correlation between the Estremadura beach sections is complicated by the tectonic complexity of the area and the age of the beach deposits (which are near or beyond the limit of radiocarbon dating). Evidence from multiple sites dated by AMS radiocarbon and optical luminescence methods suggests broad synchroneity in relative sea-level changes along this coast during Marine Isotope Stage 3. Two beach complexes with luminescence and radiocarbon age control date to about 35 ka and 42 ka, recording a rise in relative sea level around the time of Heinrich Event 4 at 39 ka. Depending on assumptions about eustatic sea level at the time they were deposited, we estimate that these beaches have been uplifted at rates of 0.4–4.3 mm yr−1 by the combined effects of tectonic, halokinetic, and isostatic processes. Uplift rates of 1–2 mm yr−1 are likely if the beaches represent sea level stands at roughly 40 m below modern, as suggested by recent eustatic sea level reconstructions. Evidence from coastal bluffs and the interior of the study area indicates extensive colluvial, fluvial, and aeolian sedimentation beginning around 31 ka and continuing into the Holocene. These geomorphic adjustments are related to concomitant changes in climate and sea level, providing context that improves our understanding of Late Pleistocene landscape change and human occupation on the western Iberian margin.