Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4737204 | Quaternary Science Reviews | 2010 | 12 Pages |
Stable isotope analyses of Sphagnum alpha-cellulose, precipitation and bog water from three sites across northwestern Europe (Raheenmore, Ireland, Walton Moss, northern England and Dosenmoor, northern Germany) over a total period of 26 months were used to investigate the nature of the climatic signal recorded by Sphagnum moss. The δ18O values of modern alpha-cellulose tracked precipitation more closely than bog water, with a mean isotopic fractionation factor αcellulose-precipitation of 1.0274 ± 0.001 (1σ) (≈27‰). Sub-samples of isolated Sphagnum alpha-cellulose were subsequently analysed from core WLM22, Walton Moss, northern England yielding a Sphagnum-specific isotope record spanning the last 4300 years. The palaeo-record, calibrated using the modern data, provides evidence for large amplitude variations in the estimated oxygen isotope composition of precipitation during the mid- to late Holocene. Estimates of palaeotemperature change derived from statistical relationships between modern surface air temperatures and δ18Oprecipitation values for the British Isles give unrealistically large variation in comparison to proxies from other archives. We conclude that use of such relationships to calibrate mid-latitude palaeo-data must be undertaken with caution. The δ18O record from Sphagnum cellulose was highly correlated with a palaeoecologically-derived index of bog surface wetness (BSW), suggesting a common climatic driver.