Article ID Journal Published Year Pages File Type
4737586 Quaternary Science Reviews 2007 13 Pages PDF
Abstract

In order to link the charcoal record from sedimentary archives with the combustion processes that reflect past anthropogenic activity, a novel method based on automated image analysis was developed. It allows a detailed quantification and morphological analysis of the combustion-derived products that were emitted in the area of Lake Lucerne (Central Europe) throughout the last 7200 years.Charcoal-particle distribution reconstructed from the composite sedimentary record shows that the charcoal input is primarily linked to redistribution of detrital μm-size charcoal degradation products from surface runoff into the large lake basin. However, the independent distribution of the coarser charcoal fraction (>38 μm) exhibits four major periods of large-scale fire activity around 5500, 3300, 2400, and 530 cal. BP. These events are synchronous with major anthropogenic changes (lake-dwellings, land-use changes, technological innovations), although it is possible that these major fire episodes could have been indirectly triggered by climatic deterioration and unfavorable environmental conditions. During the late-nineteenth-century, a great increase in slag particles and magnetic spherules of fly-ash occurred due to the steamboat navigation on Lake Lucerne. The successive burning of wood (after AD 1838), coal (after AD 1862), and diesel (after AD 1931) by the steamboat traffic produced specific particle shapes, providing valuable chronological markers for dating the recent sediments and a proxy for fossil fuel combustion.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, ,