Article ID Journal Published Year Pages File Type
4737722 Quaternary Science Reviews 2007 26 Pages PDF
Abstract

This study presents relative sea level (RSL) curves for seven coastal areas in Akarnania and the northwestern Peloponnese (NW Greece) since the mid-Holocene. RSL fluctuations are deduced from 48 14C-AMS dated sedimentological sea level markers from 27 vibracores drilled in near-coast geological archives as well as from six geoarchaeological sea level indicators of known ages. Seven palaeo sea level curves including uncertainty bands are reconstructed for a coastal zone spanning a distance of 150 km. Considerable intra-regional differences in sea level evolution exist. These differences are mainly due to tectonic reasons. In general, RSL in northwestern Greece has never been higher than today. Rates of local sea level rise were highest until 5500–5000 cal BC (up to 12.3 m/ka) and lowest during 4000–500 cal BC (0.2–1.4 m/ka). During the past 2500 or so years, RSL has accelerated anew (0.7–2.7 m/ka). Calculating differences between local mean sea level curves provides quantitative information on intra-regional differences of tectonic activity. The coastal plains of Palairos and Elis show signs of uplift, whereas the Mytikas and Boukka plains are strongly subsiding. Compared to other areas of the eastern Mediterranean, northwestern Greece has been subject to significant net long-term subsidence. Regional tectonic events (RTEs) were detected for the time around 4000, 2500, 500 and 250 cal BC as well as around 250 and 1250 cal AD. RTEs are characterized by changes of uplift/subsidence rates or by the redirection of local tectonic movements. The question if some of the RTEs were of a supra-regional nature is still open. From a geodynamic point of view, the results presented show that Akarnania's southwestern fringe is being downwarped while the tectonic block as a whole is moving towards the southwest. Strongest subsidence rates are observed for central Akarnania. At Akarnania's fringes, subsidence is reduced by the influence of strong uplift of adjacent areas such as around Preveza and the northern Peloponnese.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
,