Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4742110 | Physics of the Earth and Planetary Interiors | 2010 | 7 Pages |
Abstract
We investigated the spin state of iron in Mg0.82Fe0.18SiO3 silicate perovskite using Mössbauer spectroscopy and nuclear forward scattering (NFS) at pressures up to 130 GPa and temperatures up to 1000 K. Majorite starting material was loaded into diamond anvil cells in three separate experiments, and transformed to silicate perovskite through laser heating. We found, in agreement with previous work, the predominance of a component with high isomer shift (â¼1 mm/s relative to α-Fe) and high-quadrupole splitting (QS) (>4 mm/s) in Mössbauer and NFS spectra up to 115 GPa at room temperature, and in accordance with previous work this component was assigned to intermediate-spin Fe2+. At higher pressures, the intensity of the high QS component in the silicate perovskite spectrum decreased, while the intensity of a new component with low isomer shift (â¼0 mm/s relative to α-Fe) and low quadrupole splitting (<0.5 mm/s) increased. This new component was assigned to low-spin Fe2+, and its intensity increased with both increasing pressure and increasing temperature: at 120 GPa and 1000 K all Fe2+ was in the low-spin state. X-ray diffraction data showed well crystallised perovskite in all runs, and although the stable phase above â¼110 GPa is expected to be post-perovskite, sluggish transition kinetics likely preserved the perovskite phase in a metastable state. Our results combined with data in the literature and thermodynamic and topological considerations suggest that there may be a region where silicate perovskite containing low-spin Fe2+ is stable, which coincides with predicted pressure-temperature conditions near the Dâ³ layer.
Keywords
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geophysics
Authors
C. McCammon, L. Dubrovinsky, O. Narygina, I. Kantor, X. Wu, K. Glazyrin, I. Sergueev, A.I. Chumakov,