Article ID Journal Published Year Pages File Type
4742496 Physics of the Earth and Planetary Interiors 2007 19 Pages PDF
Abstract

Mantle flow models that do not consider the effects of latent heat on phase boundaries typically predict dynamic surface topography too large to be compatible with observations. Here these effects were implemented in a mantle flow model and resulting changes in dynamic topography and topography of phase boundaries were computed. Inclusion of these effects was found to reduce the rms amplitude of dynamic topography by about 50–60 m, still leaving a substantial misfit from observations in most cases considered. Generally, it also leads to a slight improvement of correlation with dynamic surface and phase boundary topography constrained by observations. Results thus indicate that the model implemented here is applicable to the Earth, but that other effects need to be considered as well in order to fully explain phase boundary and dynamic surface topographies.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geophysics
Authors
,