Article ID Journal Published Year Pages File Type
4742599 Physics of the Earth and Planetary Interiors 2008 6 Pages PDF
Abstract

Contact-free, laser-flash analysis (LFA) accurately (±2%) measures lattice thermal diffusivity (D) at high temperature (T). Conventional measurements of minerals underestimate D by ∼20% near 298 K due to interface resistance, although simultaneously existing direct radiative transfer artificially elevates D as T rises. Pressure (P) determinations possess these and other problems; however, reproduced values of ∂D/∂P agree the damped harmonic oscillator model. Models combined with new LFA data on perovskite compounds show that lattice thermal conductivity (klat) is high and independent of T, increasing from 7.5 to 30 W/m K (±25%) across the lower mantle (LM) due to compression. Diffusive radiative transfer is estimated from a recent model: For expected fine grain-size, spectral characteristics do not play a strong role, indicating that krad increases from ∼1 to ∼5 W/m K across the LM, estimated from olivine spectra.Although greater accuracy through improved measurements is needed, our results demonstrate that the LM is an efficient conductor of heat. Even a low, adiabatic temperature gradient can carry the power inferred to run the dynamo. Mantle convection may be limited to above 670 km.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geophysics
Authors
,