Article ID Journal Published Year Pages File Type
4742738 Physics of the Earth and Planetary Interiors 2008 7 Pages PDF
Abstract

The wetting characteristics of liquid Fe–Si alloys in a matrix of the respective predominating stable silicate mantle mineral (forsterite or silicate perovskite) at pressures of 2–5 and 25 GPa and temperatures of 1600–2000 °C were studied by determining the liquid metal–solid silicate contact angles. The median angle values from texturally equilibrated samples were found to be independent of pressure, temperature, silicate mineralogy and the Si content in the metal fraction and range between 130° and 140° which is far above the critical wetting boundary of 60°. This shows that within the studied range of conditions dissolved Si does not lower the surface energies between Fe-rich liquids and silicate mantle grains. As a consequence, under reducing conditions the presence of Si in the metal phase of planetary bodies would not have enhanced percolative flow as an effective metal–silicate separation process.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geophysics
Authors
, , ,