Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4742834 | Physics of the Earth and Planetary Interiors | 2007 | 11 Pages |
Abstract
We have determined phase relations in the Fe-O and Fe-O-S systems in the range of 15-21 GPa and 1825-2300 °C. Below the liquidus temperatures, solid FeO and metallic liquids are observed in both the Fe-O and the Fe-O-S systems. An immiscible two-liquid region exists in the Fe-O binary system in the pressure range investigated, and the immiscibility gap between Fe-rich metallic liquid and FeO-rich ionic liquid does not greatly change with either pressure or temperature. On the other hand, an immiscible two-liquid region in the Fe-O-S ternary system narrows significantly with increasing pressure at constant temperature and vice versa, and it almost disappears at 21 GPa, and 2300 °C. Immiscible two-liquid regions are thus not expected to exist in the Fe-O-S system in the Earth's core, suggesting that both oxygen and sulfur can be incorporated into the core. Our results are consistent with a geochemical model for the core containing 5.8 wt.% oxygen and 1.9 wt.% sulfur as proposed by McDonough and Sun [McDonough, W.F., Sun, S.-S., 1995. The composition of the Earth. Chem. Geol. 120, 223-253].
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geophysics
Authors
Kyusei Tsuno, Eiji Ohtani, Hidenori Terasaki,