Article ID Journal Published Year Pages File Type
4742950 Physics of the Earth and Planetary Interiors 2006 9 Pages PDF
Abstract
The oscillatory dynamics of a rotating, self-gravitating, stratified, compressible, inviscid fluid body is simplified by an exact description in terms of three scalar fields which are constructed from the dilatation, and the perturbations in pressure and gravitational potential [Seyed-Mahmoud, B., 1994. Wobble/nutation of a rotating ellipsoidal Earth with liquid core: implementation of a new set of equations describing dynamics of rotating fluids M.Sc. Thesis, Memorial University of Newfoundland]. We test the method by applying it to compressible, but neutrally-stratified, models of the Earth's liquid core, including a solid inner core, and compute the frequencies of some of the inertial modes. We conclude the method should be further exploited for astrophysical and geophysical normal mode computations.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geophysics
Authors
, ,