Article ID Journal Published Year Pages File Type
4744607 Engineering Geology 2010 11 Pages PDF
Abstract

We monitored acoustic emission (AE) events during an in-situ direct shear test on a specimen composed of a slate-dominant alternation of slate and sandstone, measuring 0.5 m long, 0.5 m wide and 0.2 m high. The test was conducted in a survey tunnel for an underground powerhouse in central Japan. The AE epicenters located on a fractured plane are compared with the locations of joints and a loosening seam, the height distribution of the fractured plane, and the horizontal movement of the test block prior to failure. We conclude that an initially intact region of rock bounded by the joints and the seam is fractured, generating the AE. Considering these results in connection with asperity models of seismogenic faulting for a subduction-zone earthquake, the significant contrast of stress conditions derived from the geological inhomogeneity and the uneven fractured plane is analogous to that due to subducted seamounts and horst-graben structures on a subducted oceanic plate. For an inland earthquake, the intact regions on an expected shear plane can be considered to be a portion of the fault asperity that causes strong ground motion, while the weakened portion can be considered to correspond to a region of aseismic creep. Consequently, large-scale inhomogeneous rock fracturing experiments such as the in-situ direct shear test may provide useful insights as analog models of seismogenic faulting. Furthermore, understanding of inhomogeneous rock-mass fracturing obtained from such experiments will not only contribute to a better understanding of the mechanism of earthquakes but also provide valuable knowledge for AE monitoring applications in rock engineering, such as the predictions of rockbursts in mines and the monitoring of fractures around large underground chambers.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, , ,