Article ID Journal Published Year Pages File Type
4749007 Marine Micropaleontology 2012 10 Pages PDF
Abstract

We evaluate the relationship between foraminiferal test size and shell geochemistry (δ13C, δ18O, and Mg/Ca) for two of the most commonly used planktonic foraminifers for paleoceanographic reconstruction in the subtropical Atlantic Ocean: the pink and white varieties of Globigerinoides ruber. Geochemical analyses were performed on foraminifera from modern core-top samples of high-accumulation rate basins in the northern Gulf of Mexico. Mg/Ca analysis indicates a positive relationship with test size, increasing by 1.1 mmol/mol (~ 2.5 °C) from the smallest (150–212 μm) to largest (> 500 μm) size fractions of G. ruber (pink), but with no significant relationship in G. ruber (white). In comparison, oxygen isotope data indicate a negative relationship with test size, decreasing by 0.6‰ across the size range of both pink and white G. ruber. The observed increase in Mg/Ca and decrease in δ18O are consistent with an increase in calcification temperature of 0.7 °C per 100 μm increase in test size, suggesting differences in the seasonal and/or depth distribution among size fractions. Overall, these results stress the necessity for using a consistent size fraction in downcore paleoceanographic studies. In addition, we compare downcore records of δ18O and Mg/Ca from pink and white G. ruber in a decadal-resolution 1000-year sedimentary record from the Pigmy Basin. Based on this comparison we conclude that pink G. ruber is calcifying in warmer waters than co-occurring white G. ruber, suggesting differences in the relative seasonal distribution and depth habitat of the two varieties.

► We assess the relationship between size and geochemistry in Globigerinoides ruber. ► Mg/Ca increases, and d18O becomes more depleted as G. ruber test size increases. ► Data suggest that test size increases with increasing calcification temperature. ► Data suggest distinct depth/seasonal distributions for pink and white G. ruber.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Palaeontology
Authors
, , , ,