Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4762163 | Trends in Cognitive Sciences | 2017 | 11 Pages |
Abstract
Recent electrophysiological results imply that the duration of the stimulus onset asynchrony in eyeblink conditioning is encoded by a mechanism intrinsic to the cerebellar Purkinje cell. This raises the general question - how is quantitative information (durations, distances, rates, probabilities, amounts, etc.) transmitted by spike trains and encoded into engrams? The usual assumption is that information is transmitted by firing rates. However, rate codes are energetically inefficient and computationally awkward. A combinatorial code is more plausible. If the engram consists of altered synaptic conductances (the usual assumption), then we must ask how numbers may be written to synapses. It is much easier to formulate a coding hypothesis if the engram is realized by a cell-intrinsic molecular mechanism.
Related Topics
Life Sciences
Neuroscience
Cognitive Neuroscience
Authors
C.R. Gallistel,