Article ID Journal Published Year Pages File Type
4764171 Chinese Journal of Chemical Engineering 2017 7 Pages PDF
Abstract
Energy efficiency evaluation plays an important role in energy efficiency improvement of the ethylene production. It is observed from the actual production data that the ethylene production energy efficiency often varies with the complex production working conditions. In the favored methods for energy efficiency evaluation, DEA models may show poor resolution when directly used to evaluate the efficiency values. Therefore, a new energy efficiency evaluation method for ethylene production is proposed based on DEA integrated factor analysis with respect to operation classification. Three key factors, including raw material composition, cracking depth and load rate, are taken into account in determining the production working conditions by means of k-means algorithm. Based on the multi-working conditions mode the energy efficiency evaluation of the ethylene production is made by using DEA model, where the most related energy data are screened by factor analysis. Furthermore, the supporting decision of energy efficiency improvement is provided to the operators. The accuracy and effectiveness of the proposed method are illustrated by applying in a practical ethylene production, which gives more effective energy efficiency evaluation in the complicated working conditions of ethylene production with declined dimension of input indicators.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , ,