Article ID Journal Published Year Pages File Type
4764993 Data in Brief 2017 9 Pages PDF
Abstract

The data presented in this article are related to the research article entitled “High thermoelectric performance in pseudo quaternary compounds of (PbTe)0.95−x(PbSe)x(PbS)0.05 by simultaneous band convergence and nano precipitation” (Ginting et al., 2017) [1]. We measured electrical and thermal transport properties such as temperature-dependent Hall carrier density nH, Hall mobility μH, thermal diffusivity D, heat capacity Cp, and power factor S2σ in (PbTe)0.95−x(PbSe)x(PbS)0.05 (x=0.0, 0.05, 0.10, 0.15, 0.20, 0.35, and 0.95) compounds with other related compounds from references. From the theoretical fitting of thermal conductivity κ, we found that the temperature-dependent thermal conductivity follows nano-structure model as well as alloy scattering. Transmission electron microscopy images shows that there are numerous nano-scale precipitates in a matrix. Owing to the low thermal conductivity and high power factor, we report high thermoelectric performances such as the high ZT, engineering ZTeng, efficiency η.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , , ,