Article ID Journal Published Year Pages File Type
4766135 Dyes and Pigments 2017 8 Pages PDF
Abstract
The aim of this study was to prepare and demonstrate a new kind of thermosensitive luminous fiber based on optical interference of thermochromic pigments. The surface morphology of a thermosensitive luminous fiber, containing Sr2ZnSi2O7: Eu2+, Dy3+; Y2O2S: Eu3+, Mg2+, Ti4+; and heat-sensitive rose red TF-R1 thermochromic pigment, was analyzed by scanning electron microscope (SEM). The X-Ray Diffraction (XRD) results revealed the crystal structure of the fiber samples and the synthesized rare-earth luminescence materials. There was no degradation of the crystalline phases in the blend when blending and spinning. The thermodynamic stability and dynamic phase structure were analyzed by Thermal Gravity Analysis (TGA) and Differential Scanning Calorimetry (DSC). This thermosensitive polyacrylonitrile (PAN) luminous fiber was stable below 200 °C. The fluorescence spectra, reflectivity spectra were measured to reveal the phosphorescence and thermochromism, and visual testing was also performed. The phosphorescence colors of the thermosensitive luminous fiber were directly related to the temperature. The prepared fiber samples had a red emission at room temperature, and because of the inner phase transition of the heat-sensitive rose red TF-R1 thermochromic pigment on heating, the fiber samples became colorless with blue light emission. This novel thermosensitive luminous fiber has many potential applications in optical and thermal sensors.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , ,