Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4766790 | Electrochimica Acta | 2017 | 7 Pages |
Abstract
In the present work, the sample of Si nanoparticles embedded in porous C (denoted as Si@porous-C) has been successfully synthesized by using nano-MgO as the pore-former. Observations by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) on Si@porous-C sample reveal that Si nanoparticles homogeneously disperse in porous carbon scaffold. As anode of lithium ion battery (LIB), Si@porous-C preserves a charge-discharge capacity of 1172 mAh gâ1 after 40 cycles, possessing enhanced cyclic deterioration of only 0.35% per cycle in comparison with Si nanoparticles and Si nanoparticles embedded in ordinary carbon (denoted as Si@C). It delivers reversible capacities of about 947 mAh gâ1, 670 mAh gâ1, and 394 mAh gâ1 in current densities of 1000 mA gâ1, 2000 mA gâ1, and 4000 mA gâ1, respectively, all of which are higher than those of commercial nano-silicon and Si@C. The improved high-rate capability of Si@porous-C could be attributed to a decreased resistance and enhanced infiltration of electrolytic solution around nano-silicon particles. The merits of scalable synthetic process and improved electrochemical properties recommend Si@porous-C as a promising anode material for high performance Li-ion batteries.
Keywords
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Chemical Engineering (General)
Authors
Xiangyang Zhuang, Yao Zhang, Lingxiao He, Yunfeng Zhu, Qifeng Tian, Xinli Guo, Jian Chen, Liquan Li, Quan Wang, Guanzhou Song, Xiaoxiao Yan,