Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4766990 | Electrochimica Acta | 2017 | 47 Pages |
Abstract
Stress corrosion cracking (SCC) tests performed in oxygenated high-temperature water with compact tension (CT) specimens have indicated that very small concentrations of chloride accelerate significantly the rate of crack growth in low-alloyed steels (LAS). In the present work, the electrochemical conditions in a CT specimen are simulated and compared to those in a cladding flaw. The Clâ and Fe2+ concentrations and the corrosion potential are predicted to be significantly higher in the crevice of a CT specimen than in the cladding flaw, whereas pH is significantly lower. Thus, a much more aggressive environment is established in the CT specimen. General corrosion rates of LAS in the presence of chloride, estimated by impedance spectroscopy, weight loss and thickness of oxide films, increase significantly at potentials more positive than the corrosion potential. In addition, slow strain rate tests showed susceptibility to SCC at EÂ >Â â0.3Â V vs. SHE, the tendency increasing with potential. It can be concluded that due to the higher potential in the crevice of CT specimen, determined by a more aggressive chemistry, the conditions within it are not representative for a realistic cladding flaw.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Chemical Engineering (General)
Authors
Konsta Sipilä, Martin Bojinov, Essi Jäppinen, Wolfgang Mayinger, Timo Saario, Maxim Selektor,