Article ID Journal Published Year Pages File Type
4767066 Electrochimica Acta 2017 10 Pages PDF
Abstract

Lithium sulfur (Li-S) batteries possess high theoretical specific capacity (1675 mAh g−1) and energy density (2567 Wh kg−1), but are plagued by their poor rate performance. The discovery of new carbon sources, design of novel porous carbon structures, and effective hetero-atom doping of the sulfur matrix are key to overcome this dilemma. In this paper, a boron-doped porous carbon material with a termite nest shape (TNPBC) was obtained from a new carbon source, polyaspartic acid, and borax. Importantly, the doping, activation, and pyrolysis were integrated into one step through a low cost and simple methodology. The borax was essential to formation of a high surface porous architecture and provided boron dopants, which, combined with polyaspartic acid, achieves co-doping (B and N) carbon materials with special porous structures. The simultaneous pore-formation and doping leave an abundance of hetero-atoms exposed on the surface of pores, which enhances the electrostatic interactions between the hetero-atoms and the charged species in the batteries. As a result, the S/TNPBC cathode maintains a stable capacity of 703 mAh g−1 with an excellent Coulombic efficiency of 101.3% after 120 cycles at 0.1C. Moreover, it exhibits an excellent rate capability with an initial capacity of 650 mAh g−1 at 0.5C and sustains a capacity of 500 mAh g−1 after 100 cycles. Furthermore, when TNPBC is used as the anode in a sodium ion battery, an excellent rate capability is achieved. The specific charge capacity is three times greater than without boron doping at 500 mA g−1. Due to the simple fabrication process and desirable properties of this novel architecture, TNPBC provides a new strategy for enhancing the performance of commercial energy storage devices.

Graphical abstractA novel kind of porous boron-doped carbon (TNPBC) with a termite nest structure was synthesized by combining doping, activation, and pyrolysis into one step. Using the synthesized material as a sulfur reservoir, TNPBC effectively relieved the “shuttle effect” commonly found in Li-S electrodes and achieved a decent rate performance in Li-S and sodium ion batteries.Download high-res image (181KB)Download full-size image

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , , , , ,