Article ID Journal Published Year Pages File Type
4767672 Electrochimica Acta 2016 7 Pages PDF
Abstract
Cyclic voltammetry and controlled-potential (bulk) electrolyses have been employed to probe the electrochemical reductions of 1-bromo-6-chlorohexane and 1‐chloro-6-iodohexane at silver cathodes in dimethylformamide (DMF) containing 0.050 M tetra-n-butylammonium tetrafluoroborate (TBABF4). A cyclic voltammogram for reduction of 1-bromo-6-chlorohexane shows a single major irreversible cathodic peak, whereas reduction of 1-chloro-6-iodohexane gives rise to a pair of irreversible cathodic peaks. Controlled-potential (bulk) electrolyses of 1-bromo-6-chlorohexane at a silver gauze cathode reveal that the process involves a two-electron cleavage of the carbon-bromine bond to afford 1-chlorohexane as the major product, along with 6-chloro-1-hexene, n‐hexane, 1‐hexene, and 1,5-hexadiene as minor species. In contrast, bulk electrolyses of 1-chloro-6-iodohexane indicate that the first voltammetric peak corresponds to a one-electron process, leading to production of a dimer (1,12-dichlorododecane) together with 1-chlorohexane and 6-chloro-1-hexene as well as 1‐hexene and 1,5-hexadiene in trace amounts. At potentials corresponding to the second cathodic peak, reduction of 1-chloro-6-iodohexane is a mixture of one- and two-electron steps that yields the same set of products, but in different proportions. Mechanistic schemes are proposed to explain the electrochemical behavior of both 1‐bromo-6-chlorohexane and 1-chloro-6-iodohexane.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , ,