Article ID Journal Published Year Pages File Type
4768653 Fuel 2017 8 Pages PDF
Abstract
In this paper, tightsand samples were treated with a friction reducer and a breaker to simulate the filtration process during hydraulic fracturing. Three breaking scenarios were proposed and studied correspondingly. Over balance breaking resulted in higher permeability regain than balance and under balance breaking, which means less formation damage to the near fracture matrix. The short sample has a full recovery of permeability with over balance breaking and it is higher than that with balance and under balance breaking. With over balance breaking, 0.012 wt% breaker recovers 79.5% permeability, and the permeability regain increases with higher breaker concentration. The permeability regain of longer sample is improved, up to 116.3%. With under balance breaking, 0.1 vol% friction reducer shows 81.6% permeability regain. Lower concentration friction reducer achieves a higher permeability regain. The reasons can be attributed to pore blocking effect and wettability alteration introduced by the friction reducer and breaker. The emulsion particle size in the friction reducer solution is found to overlap with the pore size distribution of tightgas sandstone. Therefore, it was able to block the matrix pores in tightsand after treated with the friction reducer and breaker. The contact angle on sample surface was changed from 24.3° to 81.1° in average.
Keywords
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,