Article ID Journal Published Year Pages File Type
4768895 Fuel Processing Technology 2017 11 Pages PDF
Abstract
A simple, cost-effective, and environmentally friendly route was developed to synthesize graphene nanosheets from humic acid via preliminary carbonization coupled with oxidation-exfoliation-thermal reduction. Such graphene nanosheets have a high specific surface area (495 m2·g− 1) with large pore volume (2.987 cm3·g− 1), unique interconnected mesoporous structure and uniform oxygen-containing functional groups in layered graphene framework, which offer a favorable and efficient pathway for the electrolyte propagation and transportation. The electrodes of supercapacitors made from these graphene nanosheets exhibit a maximum specific capacitance of 272 F·g− 1 at the current density of 50 mA·g− 1 in aqueous electrolyte, and possess excellent rate capability, low resistance, superior cycling performance with over 96.5% initial capacitance retention after 8000 cycles. The corresponding supercapacitors deliver a desirable energy density of 6.47 Wh·kg− 1 at a powder density of 2250 W·kg− 1. This study demonstrates a promising synthesis route for large-scale production of graphene nanosheets from renewable and green humic acid for high performance supercapacitors.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , , , , , ,