Article ID Journal Published Year Pages File Type
48459 Applied Catalysis B: Environmental 2008 10 Pages PDF
Abstract

Alumina-supported bimetallic and monometallic Mn and Pd monolithic catalysts were prepared and tested in methane combustion. Two different reactor configurations were adopted for catalyst testing, i.e. a fixed-bed laboratory-scale reactor and a pilot-plant reactor which allowed work at different temperatures and pressures. The results of catalyst performance showed that all bimetallic catalysts are considerably more stable for methane combustion than the monometallic palladium catalyst. With the aim to explain the relationship between activity-stability and structure and surface properties, the catalysts were characterized by TPO, XRD, XPS and ICP-AES. The high stability displayed by the bimetallic systems is attributed to the influence of manganese in retarding the decomposition of PdO into metallic palladium. Thus, it appears that manganese oxides inhibit PdO decomposition, as a consequence of the increase in oxygen mobility in the manganese oxide spinel phase.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , , , , , ,