Article ID Journal Published Year Pages File Type
48484 Applied Catalysis B: Environmental 2008 9 Pages PDF
Abstract

The glow discharge plasma treated Ni/Al2O3 catalyst showed an excellent anti-coke property for CO2 reforming of methane. Characterizations using X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction (TPR), transmission electron microscopy (TEM), and CO adsorbed infrared spectroscopy (IR) were conducted to investigate the structure and reactivity of the plasma treated Ni/Al2O3 catalyst for CO2 reforming of methane. It confirms that the plasma treatment of Ni precursor at room temperature followed by calcination thermally has a significant influence on the surface characteristics of the active phase. The plasma treated catalyst contains high concentration of close packed plane with improved Ni dispersion and enhanced Ni-alumina interaction, which lead to high catalytic activity and excellent resistance to formations of filamentous carbon and encapsulating carbon.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , ,