Article ID Journal Published Year Pages File Type
4907857 Journal of Electroanalytical Chemistry 2017 30 Pages PDF
Abstract
Direct methanol fuel cells (DMFCs) proved to be promising alternative for renewable energy resources. There are several factors involved for the hindrance of their commercialization. Herein, the alteration in catalyst's chemistry has been mainly focused to improve the performance of DMFCs. Mesoporous carbon supported bimetallic combinations of Pt with metallic oxides such as, Pt/CeO2-MC, Pt/PrO2-MC, Pt/NdO2-MC, and Pt/SmO2-MC were synthesized and tested as methanol electro-oxidation anode catalysts. These high-surface area anodes were synthesized by impregnation with Pt to form the desired methanol electro-oxidation catalysts. The as-prepared catalysts were characterized using XRD, BET surface area, and EDS. High surface areas of 684-778 m2/g were achieved for the CeO2-MC, PrO2-MC, NdO2-MC, and SmO2-MC, which enabled excellent dispersion of the Pt nanoparticles onto their surfaces. The Pt/CeO2-MC catalyst showed the highest activity for methanol electro-oxidation, which is about 3.5% more than that of the commercial Pt-Ru/C (E-TEK) catalyst. In addition, the prepared catalysts showed significant stability and durability.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,