Article ID Journal Published Year Pages File Type
4911727 Composite Structures 2017 17 Pages PDF
Abstract
To combine lightness and rigidity in passive damping, elastic faces of visco-elastic sandwich structures are often made of laminates. These laminates are usually cross-ply, angle-ply, special orthotropic, anti-symmetric or balanced laminates which are commonly called classical laminates. In the design of visco-elastic sandwich structures, one often seeks to maximize the loss factor of the structure and its rigidity. To achieve this, computations are often made for several combinations of laminate fibers' orientation angles. In this paper, the optimal design of composite laminates regarding the orientation angles is carried out by an improved layer-wise optimization algorithm (ILOA) by coupling a parametric non-linear eigenvalue problem resolution method (PANLER) with the so-called layer-wise optimization algorithm (LOA) to determine maximal frequencies and loss factors. The results are checked against a classical optimization algorithm.
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,