Article ID Journal Published Year Pages File Type
4911790 Composite Structures 2017 35 Pages PDF
Abstract
The hygro-thermal effects on vibration and buckling analysis of functionally graded beams are presented in this paper. The present work is based on a higher-order shear deformation theory which accounts for a hyperbolic distribution of transverse shear stress and higher-order variation of in-plane and out-of-plane displacements. Equations of motion are obtained from Lagrange's equations. Ritz solution method is used to solve problems with different boundary conditions. Numerical results for natural frequencies and critical buckling temperatures of functionally graded beams are compared with those obtained from previous works. Effects of power-law index, span-to-depth ratio, transverse normal strain, temperature and moisture changes on the results are discussed.
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , , ,