Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
49121 | Applied Catalysis B: Environmental | 2006 | 11 Pages |
Alkali doped oxides were synthesized and tested as catalysts for diesel soot combustion using a combinatorial method. It has been found that potassium shows better promotion of the catalytic activity than other alkali elements, and most of the potassium-rich oxides showed similar catalytic behaviors when catalysts and soot were mixed in a slurry. The influence of different mixing methods, including loose contact, tight contact and slurry (wet) mixing with different soot suspensions, on the catalytic behavior of some transition metal oxides, alkali metal carbonates and potassium-containing oxides were studied through thermogravimetry and XRD. The high activity of potassium-containing catalysts is found to be due to the intimate contact between soot and potassium cations caused by polar solvents. Potassium containing catalysts degraded after repeated thermal cycles due to the loss of potassium. It was also found that the addition of transition elements can inhibit the loss of potassium.