Article ID Journal Published Year Pages File Type
4915622 Progress in Energy and Combustion Science 2017 42 Pages PDF
Abstract
Combustion environments in propulsion systems involve the interaction of a variety of physics. In devices such as augmentors, ramjets and scramjets, such environments include the interaction between combustion, high-intensity turbulence, and/or strong flow compressions and expansions, physics which are termed here high-speed combustion. With this motivation in mind, this paper addresses: What are the problems encountered when modeling these interactions, or in other words, what are the problems of turbulent-combustion modeling? Do such interactions need modeling? What are the challenges when going from modeling low-speed- to high-speed-combustion problems? This work addresses these questions by summarizing several modeling studies of gaseous high-speed-combustion problems, and attempts to interpret some predictions in the context of the models' basic assumptions. Interestingly, the challenges to model high-speed combustion are such that a reader not interested in this topic but in the general one of modeling turbulent combustion may find the present paper useful.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,