Article ID Journal Published Year Pages File Type
4917608 Composite Structures 2018 11 Pages PDF
Abstract

Progressive damage analysis of composite structures remains problematic, holding back the full potential of these materials. Widely used continuum damage models feature a heuristical stiffness reduction to reflect damage, resulting in an unrealistic representation of damage patterns. To the end of a more realistic failure representation, this paper proposes a blended methodology for progressive damage analysis of such structures implemented in ABAQUS, combining continuum damage models with a more physically based approach from a fracture mechanics perspective. Matrix cracks are modelled through the eXtended Finite Element Method and delaminations through a cohesive zone model. Validation of the blend on an experimental campaign of open-hole tensile tests shows remarkable predictive capability, in good conformance to experimental failure loads, digital image correlation and acoustic emission measurements - particularly yielding more realistic damage patterns than state-of-the-art continuum damage model implementations.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,