Article ID Journal Published Year Pages File Type
4918134 Construction and Building Materials 2017 8 Pages PDF
Abstract
The physicochemical properties of a self-developed, waterborne, saline-based hydrophobic agent and the chloride resistance of concrete treated with the waterborne hydrophobic agent are presented in this paper. The low penetration depth of the waterborne hydrophobic agent is found to be primarily determined by the large micelle size. Moreover, the capillary water absorption is significantly suppressed by the surface treatment of the cement-based substrates with the waterborne hydrophobic agent. In terms of the water penetrability, the waterborne hydrophobic agent has remarkable thermal, low-temperature, ultraviolet, alkali and acid resistances. The compactness of the mortar specimen impregnated with the waterborne hydrophobic agent is improved, resulting in the unexpected increase in the water impermeability of the impregnated mortar. In addition, the impregnated concrete specimen has a pronounced chloride resistance. The penetration depth of the waterborne hydrophobic agent developed in this work is as low as 0.43 mm, yet it is still more than qualified to serve as a waterproofing product.
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , , , , , ,