Article ID Journal Published Year Pages File Type
4918386 Construction and Building Materials 2017 11 Pages PDF
Abstract
In this work, an experimental study was carried out to investigate the stress-dependent characteristics of concrete under cyclic loading, based on a nonlinear resonant ultrasonic method. Since concrete subjected to cyclic loading accompanies variations in the elastic and plastic characteristics of concrete in relation to microstructural changes, the adoption of a nonlinear ultrasonic approach is required, which has advantages for the evaluation of micro-cracks in concrete. In this experimental study, two types of loading were considered, namely, continuously increased and cyclic repeated, to identify their effects on the ultrasonic nonlinearity of concrete and the load-induced damage. An additional experiment on the exposure of concrete samples to high temperature was conducted to further investigate the effects of cyclic loading accompanied by an increased occurrence of micro-cracking. A comparison analysis was also performed on the experimental results, and the potential to monitor the stress history of concrete by using the nonlinear resonant ultrasonic method was evaluated.
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,