Article ID Journal Published Year Pages File Type
4919113 Energy and Buildings 2017 16 Pages PDF
Abstract
The results indicated that the impact of changed weather conditions was significantly lower than the impact of building renovation. Overall, the difference in the parameters rate of decrease/increase was lower than 2% between weather scenarios for the same year considered. After the initial building renovation in 2020, the slope coefficient of the outdoor temperature-heat demand function increased between 45% and 51%, while the intercept decreased within the range of 48% and 51% (depending on the weather scenario and location considered). The reduction in the number of heating hours was almost negligible in the colder climates considered, while in the warmer climates the decrease rate was significant - 0.8% and 43% of heating hours respectively in 2050 compared to 2010, for the medium weather scenario. Such decrease in demand and heating hours could significantly impact the operational parameters of heat production and distribution units, as well as their feasibility.
Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , , , ,